Adsorptive performance of tetracarboxylic acid-modified magnetic silica nanocomposite for recoverable efficient removal of toxic Cd(II) from aqueous environment: Equilibrium, isotherm, and reusability studies

نویسندگان

چکیده

Herein, mesoporous magnetic nanocomposite (Fe3O4@SBTCA) was specifically designed and fabricated for its high efficient application in the removal of toxic Cd(II) ions from aquatic environment. The structure, surface characteristics, composition nanocomposites were characterized by FT-IR, BET analysis, XRD, TEM, EDX, Zeta potential measurement TGA analysis. TEM images XRD exhibited average particle size Fe3O4@SBTCA less than 22 nm. impact different variables on adsorption explored using batch method findings revealed that highest capacity 158.68 mg/g achieved at pH 7.5 solution temperature 25 °C after 120 min agitation 100 rpm. Nonlinear Elovich models pseudo first-order second-order equations applied to study kinetics results reveal first order best describe kinetics. isotherm modeling non-linear Freundlich could fit data better others, such as Dubinin Radushkevich Langmuir models, indicating physisorption nature. thermodynamic analysis verified process exothermic. showed good recoverable efficiency up four times recycling.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Magnetic-modified Fe3O Nanoparticles for Removal of Crystal Violet from Aqueous Solution: Kinetic, Equilibrium and Thermodynamic Studies

The prepared magnetic-modified Fe3 O4 nanoparticles (Fe3 O4 -TAN) were used as adsorbent for removal of crystal violet (CV) from water solution. The effects of pH, contact time, dye concentration and temperature on adsorption were determined. The experimental data were analyzed using the Langmuir adsorption model. The data fitted well to the model with maximum adsorption capacities 84.0 mg/gund...

متن کامل

Adsorptive removal of azide ion from aqueous solutions using modified activated carbon magnetic nanocomposite

In this work, the activated carbon/magnetic Fe3O4 nanocomposite was synthesized and characterized by TEM and XRD measurements. This magnetic nanocomposite was modified with cetylpyridinium chloride (CPC) and thus used as a new adsorbent for removal of azide ion from an aqueous solution. In an aqueous solution of azide ion, the adsorption capacity was evaluated using both the Langmuir and Freund...

متن کامل

Novel modified magnetic mesopouros silica for rapid and efficient removal of methylene blue dye from aqueous media

This reaserch aims at functionalizing magnetic mesoporous silica with methacrylic acid-3-aminopropyltriethoxysilane (Fe3O4@MCM-41@MAA-APTES) applied for removal of methylene blue from aqueous solution. Several variables (such as pH, dye concentration, adsorbent amount and contact time) have been investigated. Under optimum conditions, maximum capacity of 87.71 mg g-1 of MB was obtained for the ...

متن کامل

Fast and efficient adsorptive removal of manganese (II) from aqueous solutions using malicorium magnetic nanocomposites

Malicorium supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple,and environmentally benign procedure. The adsorbent was characterized by several methods includingX-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infraredspectroscopy (FT-IR). Then, the potential of malicorium supported Ni0.5Zn0.5Fe2O4 magneticnanoparticles was in...

متن کامل

Removal of Cerium from Aqueous Solutions by Amino Phosphate Modified Nano TiO2: Kinetic, and Equilibrium Studies

Adsorption of Ce(III) from aqueous solution by amino phosphate modified nano TiO2 was investigated. Effects of pH of solution, adsorbent dose, contact time, initial metal concentration and temperature were examined. Experimental data were fitted well by the pseudo second order model. Adsorption was well described by Freundlich isotherm model with a maximum adsorption capacity of 25 mg g-1. Acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Molecular Liquids

سال: 2021

ISSN: ['0167-7322', '1873-3166']

DOI: https://doi.org/10.1016/j.molliq.2021.116069